本文来源于 OceanBase 数据库官方博客,目前 Apache 2.3.9 已支持本文提到的所有功能,故原文
2.3.7
已全部修改为2.3.9
本方案采用 Apache SeaTunnel(简称SeaTunnel)进行MySQL 到 OceanBase 的数据迁移和同步,出于对方案轻量性的考量,我们采用其内置的 Zeta 引擎来实现,包括全量同步、离线增量同步,以及 CDC 方案。
自行安装运行环境JAVA,推荐版本为8,但理论上高于8的版本也能正常工作。
安装后,请确保已正确配置JAVA_HOME
root:~# java -versionopenjdk version "17.0.12" 2024-07-16OpenJDK Runtime Environment (build 17.0.12+7-Debian-2deb11u1)OpenJDK 64-Bit Server VM (build 17.0.12+7-Debian-2deb11u1, mixed mode, sharing)java
进入官网下载页面,下载适合版本SeaTunnel : https://seatunnel.apache.org/
我这里选择最新版本2.3.9
下载wget https://dlcdn.apache.org/seatunnel/2.3.9/apache-seatunnel-2.3.9-bin.tar.gz解压tar -zxvf apache-seatunnel-2.3.9-bin.tar.gz
SeaTunnel 安装包只包含主体文件与 Zeta 引擎,连接不同数据源的插件需要手动下载并配置。
自动下载方案
通过配置config/plugin_config
文件来指定你需要的连接器,默认文件里是全方案的,可以根据你的需要增删一些,我们这里只包含这次演示需要使用的连接库。
connector-cdc-mysqlconnector-jdbcconnector-fakeconnector-console
输入命令
sh bin/install-plugin.sh 2.3.9
开始自动下载连接器
手动下载方案
进入网站:https://repo.maven.apache.org/maven2/org/apache/seatunnel/
找到自己需要的插件例如:
connector-cdc-mysql-2.3.9.jarconnector-console-2.3.9.jarconnector-fake-2.3.9.jarconnector-jdbc-2.3.9.jarseatunnel-transforms-v2-2.3.9.jar
将文件手动下载之后 放入Connectors
验证连接器安装情况
./bin/seatunnel-connector.sh -lSourceFakeSource MySQL-CDC JdbcSinkJdbc ConsoleTransformCopy DynamicCompile FieldMapper Filter FilterRowKind JsonPath LLM Replace Split Sql
由于我们是使用 JDBC 使用 MySQL 的连接方式去操作 OceanBase 所以还需要下载一个jdbc-mysql
,请自行前往前往 MySQL 官网下载 JDBC 。
将下载的mysql-connector-j-9.0.0.jar
放到{seatunnel/lib}
中。
使用 config 官方自带的v2批操作验证 SeaTunnel 是否正常
./bin/seatunnel.sh --config ./config/v2.batch.config.template -m local参数解释:seatunnel.sh #seatunnel标准启动脚本config #选择配置脚本m #运行方式 这里选择本地运行
当您运行该命令时,可以在控制台中看到它的输出
2022-12-19 11:01:45,417 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - output rowType: name<STRING>, age<INT>2022-12-19 11:01:46,489 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=1: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: CpiOd, 85209462022-12-19 11:01:46,490 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=2: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: eQqTs, 12568029742022-12-19 11:01:46,490 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=3: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: UsRgO, 20531930722022-12-19 11:01:46,490 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=4: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: jDQJj, 19930166022022-12-19 11:01:46,490 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=5: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: rqdKp, 13926827642022-12-19 11:01:46,490 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=6: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: wCoWN, 9869999252022-12-19 11:01:46,490 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=7: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: qomTU, 727752472022-12-19 11:01:46,490 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=8: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: jcqXR, 10745292042022-12-19 11:01:46,490 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=9: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: AkWIO, 19617234272022-12-19 11:01:46,490 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=10: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: hBoib, 9290897632022-12-19 11:01:46,490 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=11: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: GSvzm, 8270857982022-12-19 11:01:46,491 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=12: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: NNAYI, 943071332022-12-19 11:01:46,491 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=13: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: EexFl, 18236895992022-12-19 11:01:46,491 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=14: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: CBXUb, 8695827872022-12-19 11:01:46,491 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=15: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: Wbxtm, 14693713532022-12-19 11:01:46,491 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=16: SeaTunnelRow#tableId=-1 SeaTunnelRow#kind=INSERT: mIJDt, 995616438
并且结尾有一个 Job 总结日志
*********************************************** Job Statistic Information***********************************************Start Time : 2024-08-29 22:45:29End Time : 2024-08-29 22:45:33Total Time(s) : 4Total Read Count : 32Total Write Count : 32Total Failed Count : 0***********************************************
创建两张一模一样的表 表结构如下:CREATE TABLE `table1` ( `id` INT NOT NULL AUTO_INCREMENT, `value1` VARCHAR(255) NOT NULL, `value2` VARCHAR(255) , `value3` VARCHAR(255) , `value4` VARCHAR(255) , `value5` VARCHAR(255) , `created_at` TIMESTAMP DEFAULT CURRENT_TIMESTAMP, `updated_at` TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, PRIMARY KEY (`id`), UNIQUE INDEX `idx_value1` (`value1`), INDEX `idx_value2_value3` (`value2`, `value3`), INDEX `idx_value3_value4_value5` (`value3`, `value4`, `value5`)) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;CREATE TABLE `table2` ( `id` INT NOT NULL AUTO_INCREMENT, `value1` VARCHAR(255) NOT NULL, `value2` VARCHAR(255) , `value3` VARCHAR(255) , `value4` VARCHAR(255) , `value5` VARCHAR(255) , `created_at` TIMESTAMP DEFAULT CURRENT_TIMESTAMP, `updated_at` TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, PRIMARY KEY (`id`), UNIQUE INDEX `idx_value1` (`value1`), INDEX `idx_value2_value3` (`value2`, `value3`), INDEX `idx_value3_value4_value5` (`value3`, `value4`, `value5`)) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
我们这边使用 navicat 创建了各100000条数据
表结构建议手动迁移,自动迁移的表结构会有一些问题,并且不会附加索引。
单表全量
env { parallelism = 5 job.mode = "BATCH"}source { Jdbc { url = "jdbc:mysql://127.0.0.1:3306/mysql?&useUnicode=true&characterEncoding=UTF-8&rewriteBatchedStatements=true" driver = "com.mysql.cj.jdbc.Driver" connection_check_timeout_sec = 100 user = "xxx" password = "xxx" query = "select * from seatunnel.table1" }}sink { jdbc { url = "jdbc:mysql://127.0.0.1:2883/mysql?&useUnicode=true&characterEncoding=UTF-8&rewriteBatchedStatements=true" driver = "com.mysql.cj.jdbc.Driver" user = "xxx@xxx" password = "xxx" # 自动判断sql语句 generate_sink_sql = true database = seatunnel table = table1 }}
结果
*********************************************** Job Statistic Information *********************************************** Start Time : 2024-08-30 15:05:39 End Time : 2024-08-30 15:05:47 Total Time(s) : 8 Total Read Count : 100000 Total Write Count : 100000 Total Failed Count : 0 ***********************************************
多表全量抽取
env { parallelism = 5 job.mode = "BATCH"}source { Jdbc { url = "jdbc:mysql://127.0.0.1:3306/mysql?&useUnicode=true&characterEncoding=UTF-8&rewriteBatchedStatements=true" driver = "com.mysql.cj.jdbc.Driver" connection_check_timeout_sec = 100 user = "xxx" password = "xxx" table_list = [ { table_path = "seatunnel.table1" }, { table_path = "seatunnel.table2" query = "select * from seatunnel.table2 where id > 100" } ] }}sink { jdbc { url = "jdbc:mysql://127.0.0.1:2883/mysql?&useUnicode=true&characterEncoding=UTF-8&rewriteBatchedStatements=true" driver = "com.mysql.cj.jdbc.Driver" user = "xxx@xxx" password = "xxx" # 自动判断sql语句 generate_sink_sql = true database = seatunnel table_list = ["seatunnel.table1","seatunnel.table2"] }}
结果
*********************************************** Job Statistic Information *********************************************** Start Time : 2024-08-30 15:10:09 End Time : 2024-08-30 15:10:20 Total Time(s) : 10 Total Read Count : 200000 Total Write Count : 200000 Total Failed Count : 0 ***********************************************
对于增量同步,简单的方法是在文件编写时,通过 Query 编写 id 或 updatetime 做增量。
env { parallelism = 1 job.mode = "BATCH"}source { Jdbc { url = "jdbc:mysql://127.0.0.1:3306/mysql?&useUnicode=true&characterEncoding=UTF-8&rewriteBatchedStatements=true" driver = "com.mysql.cj.jdbc.Driver" connection_check_timeout_sec = 100 user = "xxx" password = "xxx" query = "SELECT * FROM seatunnel.table1 WHERE updatetime > '2024-01-01' " }}sink { jdbc { url = "jdbc:mysql://127.0.0.1:2883/mysql?&useUnicode=true&characterEncoding=UTF-8&rewriteBatchedStatements=true" driver = "com.mysql.cj.jdbc.Driver" user = "xxx@xxx" password = "xxx" generate_sink_sql = true database = seatunnel table = table1 }}
在输出端的时候会根据主键进行插入与更新操作,但是这种需要从每次配置配置文件的方案比较繁琐,我更加推荐使用 Apache 配合 SeaTunnel 进行操作创建一个工作流。
从输出端获取最大时间或者 id 通过 DolphinScheduler 的工作流变量进行传输。
env { parallelism = 1 job.mode = "BATCH"}source { Jdbc { url = "jdbc:mysql://127.0.0.1:3306/mysql?&useUnicode=true&characterEncoding=UTF-8&rewriteBatchedStatements=true" driver = "com.mysql.cj.jdbc.Driver" connection_check_timeout_sec = 100 user = "xxx" password = "xxx" query = "SELECT * FROM seatunnel.table1 WHERE updatetime > ${max_id} " }}sink { jdbc { url = "jdbc:mysql://127.0.0.1:2883/mysql?&useUnicode=true&characterEncoding=UTF-8&rewriteBatchedStatements=true" driver = "com.mysql.cj.jdbc.Driver" user = "xxx@xxx" password = "xxx" generate_sink_sql = true database = seatunnel table = table1 }}
多表方案同上
手动同步表结构
由于 SeaTunnel 的 oceanbase 组件还是有所问题,表结构同步 遇到报错比较麻烦,这一步还是手动同步。
检查MySQL Binlog状态
赋予用户所需权限
mysql> GRANT SELECT, RELOAD, SHOW DATABASES, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'user' IDENTIFIED BY 'password';mysql> FLUSH PRIVILEGES;
检查binlog
日志是否开启
mysql> show variables where variable_name in ('log_bin', 'binlog_format', 'binlog_row_image', 'gtid_mode', 'enforce_gtid_consistency');+--------------------------+----------------+| Variable_name | Value |+--------------------------+----------------+| binlog_format | ROW || binlog_row_image | FULL || enforce_gtid_consistency | ON || gtid_mode | ON || log_bin | ON |+--------------------------+----------------+5 rows in set (0.00 sec)
如果不一致 请自行更改mysql.cnf
文件。
在大型数据库创建一致性快照时,可能会存在读超时,请合理配置!
interactive_timeoutwait_timeout
在处理完准备工作之后编写配置文件。
env { parallelism = 1 job.mode = "STREAMING" checkpoint.interval = 10000}source { MySQL-CDC { base-url = "jdbc:mysql://127.0.0.1:3306/mysql" username = "xxx" password = "xxx@xxx" table-names = ["seatunnel.table1", "seatunnel.table2"] startup.mode = "initial" }}sink { jdbc { url = "jdbc:mysql://127.0.0.1:2883/mysql?&useUnicode=true&characterEncoding=UTF-8&rewriteBatchedStatements=true" driver = "com.mysql.cj.jdbc.Driver" user = "xxx@xxx" password = "xxx" database = "seatunnel" # 目标数据库 table-names = ["seatunnel.table1", "seatunnel.table2"] generate_sink_sql = true # 自动生成 SQL }}
正常启动之后会进行历史数据迁移,再进行 CDC 变更。
注意:
启动之后会根据配置的表和startup.mode
选择的模式进行不同的操作。
startup.mode
操作如下: initial
启动时同步历史数据,然后同步增量数据earliest
,从最早的偏移量启动 latest
从最新偏移量启动specific
,从用户提供的特定偏移量启动。
如果使用specific
,需要添加startup.specific-offset.file binlog
文件名startup.specific-offset.pos binlog
偏转量。
本文完!
本文由 科技 提供发布支持!